First interpret it combinatorially, and then derive it algebraically from the multinomial theorem . 先用組合方法闡述,然后從多項(xiàng)式定理利用代數(shù)方法推導(dǎo)。
2 . based on the ( q , h ) - deformed quantum plane by benaoum , we establish the transformation formulae of arbitrary degree power of two variables on the ( q , h ) - deformed quantum plane . furthermore , we give the ( q , h ) - analogues of multinomial theorem , binomial reciprocal formula , chu - vandermonde identities and a pair of new double - index series inverse formula 在benaoum在引入的( q , h ) -量子變形平面的基礎(chǔ)上,首先建立了( q , h ) -量子變形平面上的變量的任意次乘積的變換公式,進(jìn)而給出了多項(xiàng)式定理、二項(xiàng)式反演、 chu - vandermonde恒等式等結(jié)果的( q , h ) -模擬以及一對新的雙指標(biāo)級數(shù)互反公式。
In mathematics, the multinomial theorem says how to expand a power of a sum in terms of powers of the terms in that sum. It is the generalization of the binomial theorem to polynomials.